5 research outputs found

    Novel approaches to performance evaluation and benchmarking for energy-efficient multicast: empirical study of coded packet wireless networks

    Get PDF
    With the advancement of communication networks, a great number of multicast applications such as multimedia, video and audio communications have emerged. As a result, energy efficient multicast in wireless networks is becoming increasingly important in the field of Information and Communications Technology (ICT). According to the study by Gartner and Environmental Protection Agency (EPA) report presented to United State Congress in 2007,energy consumption of ICT nodes accounts for 3% of the worldwide energy supply and is responsible for 2% of the global Carbon dioxide (CO2) emission. However, several initiatives are being put in place to reduce the energy consumption of the ICT sector in general. A review of related literature reveals that existing approaches to energy efficient multicast are largely evaluated using a single metric and while the single metric is appropriate for effective performance, it is unsuitable for measuring efficiency adequately. This thesis studied existing coded packet methods for energy efficiency in ad hoc wireless networks and investigates efficiency frontier, which is the expected minimum energy within the minimum energy multicast framework. The energy efficiency performance was based on effective evaluation and there was no way an inefficient network could reach a level of being an efficiency frontier. Hence, this work looked at the position of how true efficiency evaluation is obtained when the entire network under examination attains their efficiency frontiers using ratios of weighted outputs to weighted inputs with multiple variables. To address these challenges and assist network operators when formulating their network policies and performing network administrations, this thesis proposed novel approaches that are based on Data Envelopment Analysis (DEA) methodology to appropriately evaluate the efficiency of multicast energy and further minimizes energy transmission in ad hoc wireless networks without affecting the overall network performance. The DEA, which was used to study the relative efficiency and productivity of systems in Economic and Operational Research disciplines, is a non-parametric method that relies on linear programming technique for optimization of discrete units of observation called the decision making units (DMUs)

    Efficient Frontier and Benchmarking Models for Energy Multicast in Wireless Network Coding

    Get PDF
    This chapter introduces efficiency frontier and benchmarking concepts to evaluate the efficiency performance of wireless networks for multicast energy. These concepts are efficiency models based on the data envelopment analysis (DEA) technique. The DEA framework allows network administrators to evaluate the technical efficiency and determine how the inefficient wireless networks will attain a targeted efficiency frontier. In order to achieve efficiency frontier and benchmark by a wireless network, this chapter presents several models including the envelopment and the slack. The envelopment model evaluates the technical efficiency scores of each wireless network, while the slack model shows how the inefficient wireless network achieves efficiency frontier. The benchmark model evaluates the efficiency reference set and the lambda values of each network. The efficiency frontier algorithm has shown that many of the wireless networks sampled are inefficient. However, the algorithm has capability to help the inefficient wireless networks to achieve efficiency frontier and benchmark with their peers that are fully efficient

    Adaptive radio resource management for mobile satellite systems

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 89-99).In this thesis, a set of unique strategies and enhanced schemes for adaptive CDMA modulation are devised. A graded resource system is proposed for better radio resource management. Subsequently, a successful adaptive CDMA algorithm is designed and a prioritised processing gain for adaptive CDMA algorithm in satellite system is introduced. The idea of the critical section in the downlink system when a user controller scheme has to be activated to improve the performance is initiated. The diversity technique and rate compatible punctured turbo-code (RCPT), which has been found to give improved throughput performance in a direct sequence (DS) CDMA, are exploited
    corecore